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Abstract. Containers have become popular in HPC environments to improve the
mobility of applications and the delivery of user-supplied code. In this paper we
evaluate Podman, an enterprise container engine that supports rootless contain-
ers, in combination with runc and crun as container runtimes using a real-world
workload with LS-DYNA and the industry-standard benchmarks sysbench and
STREAM. The results suggest that Podman with crun only introduces a similar
low overhead as HPC-focused container technologies.
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1 Introduction

Over the last half decade, containers have become a valuable asset when it comes to
running services and applications. Especially in enterprise environments, where con-
tainers have turned into an integral part of the development, deployment and operation
of modern microservice architectures, they are well received. They also prove to be
particularly suitable for HPC environments, where they improve the mobility of appli-
cations and the delivery of user-supplied code. HPC centers are increasingly confronted
with these requirements, since users there are not only demanding software for tradi-
tional MPI-based simulations but also increasingly novel software stacks and workflows
to support workloads from the data science domain. In addition, modern sites call for
solutions that open up ways for simplified use of resources distributed across multiple
locations and for obtaining supplementary resources from the cloud [18] at a progres-
sive rate. Containers are a suitable component to support the demands for flexibility in
a in many ways converging future of compute. They decouple applications and their
dependencies from the underlying operating system and encapsulate them in an easily
redistributable unit. Due to special requirements of HPC environments in the form of
HPC-specific hardware and related libraries [2] this abstraction is not yet fully realized.
Despite these limitations and other open issues [17], the achieved state still represents
a serious advancement compared to a few years ago.

At the beginning of the containerization trend started by Docker, there was, as al-
ready before with LXC, only one runtime available, which could not be integrated easily
into HPC environments due to inherent differences in concepts. As a result, a number
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of HPC-focused container runtimes have been developed over the last few years, most
notably Singularity [10], but also Shifter [8], Charliecloud [12] and most recently Sarus
[1]. They made the concept of containers usable in HPC environments, differentiated by
diverging functional extent and implementation. However, due to their HPC focus, these
runtimes were not widely accepted beyond HPC environments and only Singularity has
achieved a notable degree of adoption in the enterprise HPC market. Even though the
interoperability of the individual runtimes has well increased due to the Open Container
Initiative (OCI) specifications, especially enterprise users show an interest in a common
solution, which is suitable for a variety of containerized workloads, including HPC, and
that consequently also allows a converging of resources.

The Podman [4] container engine fills this gap to a certain extent, as it distinguishes
itself by features such as the ability to strongly isolate workloads that are particularly
relevant in enterprise container environments, as well as an implementation and process
model that is much closer to HPC environments. To the best of our knowledge, the
potential of Podman in HPC has not been evaluated beyond basic functional testing [13]
yet, a gap we are trying to address with our research. The same applies to performance
differences between the OCI compatible runtimes runc and crun, both supported by the
Podman engine for spawning and running containers, insights we consider of use for
other container engines that rely on on runc.

The focus of this paper is to investigate the suitability of Podman in the context of
HPC and to identify current limitations. We concentrate on the performance of the con-
tainer engine, with both runc and crun as runtime, compared to the native bare metal
performance and the HPC-focused Singularity runtime used in enterprise HPC. We are
especially interested in the overhead introduced when processing a real-world work-
load using the Finite Element Analysis (FEA) application LS-DYNA. This application
from the field of Computer Aided Engineering (CAE) is widely used in the automotive
industry for crash test simulation. This investigation is complemented by a series of
industry-standard benchmarks.

The rest of the paper is organized as follows: Section 2 introduces related work on
container runtimes targeted at HPC environments with focus on performance overhead.
Section 3 covers the basic concepts of Podman in the context of HPC. Section 4 presents
the results of our evaluation of the Podman engine with the FEA application LS-DYNA
using MPI + Infiniband for communication, as well as CPU and memory performance,
using the sysbench and STREAM benchmarks and gives configuration details related to
the environment used for the experimental evaluation. Limitations we came across are
discussed in Section 5. The paper concludes in Section 6.

2 Related Work

As Docker was not able to make its mark in HPC centers due to technical challenges,
several container platforms were created to address the needs of the HPC community,
each characterized by a specific focus and means to implement the privilege escalation
required to start containers.

Singularity [10] is characterized by its easy integration into existing HPC work-
flows, uses a flat single file image format for performance reasons and offers compat-
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ibility with legacy OS installations via a setuid starter. Shifter [8] reuses some com-
ponents of the Docker workflow and combines the basic concept of containers with a
chroot environment. Charliecloud [12] is characterized by a very compact code base
and the use of user namespaces to spawn containers. Sarus [1], the latest HPC-specific
runtime, is built around OCI specifications, uses the runtime specification reference
implementation runc and extends features for HPC use cases by the use of OCI hooks.

The extent of overhead introduced by container virtualization has been investigated
many times over the last years. The study carried out by Felter et al. [6] represents
the central paper when it comes to Docker containers, as it evaluated a variety of typ-
ical services, such as MySQL, in conjunction with standard benchmarks. It concluded
that “Docker equals or exceeds KVM performance in every case we tested”. This core
statement is true throughout various application domains: Di Tommaso et al. [5], who
investigated the execution speed of genomic pipelines, shared this conclusion of “neg-
ligible impact on the execution performance”. Zhang et al. [19] summarized a “much
better scalability than virtual machines” with a Spark-based Big Data workload.

These studies have in common that they usually do not consider HPC-optimized
runtimes. HPC-specific studies are rather sparse and often only examine partial aspects,
such as only comparing a single runtime against native performance as in Wang et al.
[16] and Younge et al. [18] - or only non-distributed workloads as in Kovács [9]. The
most thorough and recent work is by Torrez et al. [15], where the three HPC-focused
runtimes Charliecloud, Shifter, Singularity are compared using a number of standard
benchmarks, with the conclusion that “the flexibility gained by using containers does
not come at the cost of performance”. Sadly the work lacks the inclusion of the Sarus
engine and an evaluation of a real-world workload.

3 Podman

Although Docker helped containers achieve their current popularity, it met with disfa-
vor not only in the HPC community, but also in Enterprise Linux distributions. This led
to the development of the Podman engine, which integrates more naturally into a Linux
system. In order to avoid potential security risks caused by the client-server architecture
implemented by Docker, Podman uses a classic fork-exec model, which also improves
audit capabilities, as, by lacking user switches, the audit subsystem has the possibility
to document which user performed container-related operations. The development of
Podman is mainly driven by Red Hat, which leads to the integration of correspond-
ing packages in Red Hat Enterprise Linux (RHEL) and its derivatives, a detail that is
interesting for HPC environments that often rely on RHEL-based distributions.

Coming from the enterprise breed of container runtimes, Podman follows the “as
much isolation as possible” paradigm rather than the “as much isolation as necessary”
preferred by HPC container runtimes. As expected, the full range of safeguards for
workload isolation is therefore supported. In addition to namespaces and cgroups these
include seccomp filters, Linux Security Modules (SELinux, AppArmor) and capabili-
ties. These mechanisms, which we presented in more detail in an earlier work in the
context of Docker [7], are not necessarily all implemented by HPC-focused runtimes
and may be less relevant to traditional HPC workloads. We expect that with the advent
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of a wider variety of applications, converged resources and the need for additional iso-
lation from bare metal operations and concurrent workloads, these will become more
important. How we addressed these mechanisms for MPI workloads is documented in
Section 4.1.

The most prominent feature of Podman is support for rootless containers, which al-
lows the execution of containers without privilege escalation mechanisms, such as root
daemon or setuid binary. Podman, like Charliecloud, uses the user namespace func-
tionality for this. Processes inside a new user namespace have different privileges and
user IDs than those outside and require corresponding configuration of /etc/sub{g,u}id.
Limitations of rootless containers are discussed in Section 5.

The Podman engine uses the runtime runc, also used by Docker and Sarus, which
is written, as Podman, in Go. It also supports the state-of-the-art runtime crun, which is
implemented in C and described by the developers as “fast and low-memory footprint”.
Crun is currently used as the default runtime in Fedora, as it already migrated to the
resource limiting feature cgroups V2, only supported by crun as of now.

As the name Pod Man(ager) implies, Podman supports the concept of Pods, which
is used to group a set of containers that collectively implement a complex applica-
tion. These containers are not completely isolated from each other, but share several
namespaces, which simplifies communication. This could be used to provide a group of
compute containers with a data sidecar container that only serves the specific input data
belonging to a job. In addition, since Kubernetes is based on pods by default, this fea-
ture provides increased flexibility in a converged environment to either launch suitable
workloads in Kubernetes or to use Kubernetes workloads with Podman.

To build container images Podman relies Buildah and offers the possibility to create
OCI compatible images from a Dockerfile without root privileges or background ser-
vices, which is a notable improvement over Docker-based build processes. It also fea-
tures functionality to create an image from scratch by using the local package manager
to install software as a measure to reduce image bloat over the regular way of running
the package manager inside the container itself. It also supports multistage builds, that
allow exclusion of build time only tools, as compilers and package managers that are
obsolete at run time, from the final build. This can result in smaller image sizes.

A feature that seems more appropriate for HPC environments than for enterprise
workloads with stateless containers is the built-in support for Checkpoint/Restore in
Userspace (CRIU). It is used to checkpoint containers and restore them at a later time
and also to migrate containers to another system, helping with scheduled downtimes and
emergency patches. Unfortunately, CRIU cannot be used in combination with rootless
containers and when using MPI and Infiniband-based workloads as of now.

Support for OCI Hooks represent a feature we have not yet had the opportunity to
gain experience with. OCI Hooks are a mechanism which is used by Sarus to extend the
runtime functionality, for example to enable synchronization with the Slurm Scheduler
[1]. However, we are aware of an extended Berkeley Packet Filter (eBPF)-based hook
from the Podman developers, which is used for automated creation of seccomp filters.
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4 Evaluation

To investigate the suitability of Podman for HPC workloads we conducted a series of
experimental evaluations, comparing rootless Podman to native execution and Singular-
ity as HPC-focused reference runtime. As container runtime for Podman we used both
runc and crun to investigate potential benefits from utilizing the newer implementation
written in C (crun) over runtimes in Go (runc, Singularity). This resulted in four distinct
runtime environments: Native, Singularity, Podman-runc and Podman-crun.

Our test environment is part of an automotive industry environment used for crash
test simulations, aero dynamics and other CAE workloads. It consists of one cell with
8 nodes and is part of a cluster with several hundred servers using FDR Infiniband and
Gigabit Ethernet as interconnect. The nodes are equipped with SSD-based local stor-
age and use CentOS Linux 8.1 with permissive SELinux and a local evaluation user.
To ensure meaningful and comparable results all tests were executed on the same sys-
tems without configuration changes during the valuation period. Details related to the
evaluation environment are documented in Table 1.

Table 1: Evaluation Cluster Details
(a) Hardware Environment

Component Details

Server 8x NEC HPC 1816Rf-2
Processor 2x Intel Xeon E5-2680 v3

(Hyper Threading enabled)
Memory 128 GB DDR4 (2134 MHz)
Interconnect FDR Mellanox Infini-

band HCA MT27500
(ConnectX-3)

Local Storage Intel SSDSC2BB80

(b) Software Environment

Component Version

Operating System CentOS Linux 8.1.1911
Kernel 4.18.0-

147.3.1.el8 1.x86 64
Singularity 3.5.2
Podman 1.6.4
crun 0.13
Platform MPI 9.1.4.3r
LS-DYNA mpp r9 3 dm 134916

As real-world workload we use two versions of a LS-DYNA crash simulation, the
core application the cluster is used with on a daily basis.

To achieve a more detailed view of the overhead induced by containers, we also
perform a series of industry-standard benchmarks. To measure CPU performance we
utilize sysbench that calculates the prime numbers between 1 and 40 million using one
thread per CPU core. For memory performance we rely on STREAM [11]. Benchmark
versions, configurations and execution calls are documented in Table 2.

4.1 LS-DYNA

LS-DYNA is used to simulate the impact of automotive crashes, explosions and sheet
metal stamping. We use the car2car model, a widely used workload originally pub-
lished by the National Crash Analysis Center (NCAC) to measure the performance of
LS-DYNA. The model includes 2.4 million single elements and simulates a frontal
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Table 2: Benchmark Configuration
Component Version Compile Flags, Call, Configuration

STREAM 5.10 gcc -m64 -O3 -mcmodel=medium -ffreestanding -fopenmp
-DSTREAM ARRAY SIZE=3000000000 -DSTREAM=double
stream.c -o stream

sysbench CPU 1.0.17 sysbench cpu –threads=24 –cpu-max-prime=40000000 run
LS-DYNA car2car short V03c memory=600m memory2=60m endtime=0.02
LS-DYNA car2car long V03c memory=600m memory2=60m [default endtime=0.12]

crash of of two minivans (see Figure 1) each at the speed of 35 mph and covers the first
120 ms of the crash. For quicker turnaround times we created an additional model that
only covers the first 20 ms. We refer to these workloads in the course of this paper as
short run (20 ms) and long run (120 ms) configuration.

(a) Zoom In Perspective (b) Side View Perspective

Fig. 1: NCAC car2car Model at time = 95 ms

We used LS-DYNA on 8 nodes with 24 processes each, as it does not scale very
well horizontally and the selected configuration has proven to be efficient. The rest of
the configuration is characterized as follows: All processes on one host share a work-
ing directory, that is located on a local SSD. The inter-process communication on each
host is accomplished via shared memory and the inter-node communication is imple-
mented by remote memory access via FDR Infiniband. Upon using mpirun to start a
containerized run, one container is being created for each process. The different jobs
were directly started with mpirun, omitting batch system integration, but still main-
taining an identical LS-DYNA invocation throughout the tests. We extended the shell
environment with information regarding the LS-DYNA licence server, Platform MPI
library path and MPI meta variables, and passed the updated environment into the con-
tainer that starts the application. To obtain meaningful results, each LS-DYNA run was
carried out six times with each configuration in every runtime environment.

Starting the containerized workload with Singularity was straightforward and re-
quired no additional parameters or adjustments: mpirun mpp i=Caravan-V03c-2400k-
main-shell16-120ms.k memory=600 memory2=60.

Since Podman is not developed specifically for HPC workloads, we had to make
a some adjustments to the container execution call: interprocess communication and
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shared memory access require pid and ipc namespace sharing among the containers.
The net namespace must also be shared between the containers and the host, so that MPI
on the host can manage internode communication. These adjustments are achieved by
appending the command line parameters –net=host –pid=host –ipc=host. Furthermore
we used –env=host to pass the host environment into the container and –volume to bind
mount a shared working directory and pass the Infiniband device into the containers.

Table 3: LS-DYNA: Arithmetic mean + overhead
Native Singularity Podman-runc Podman-crun

Short Run 1097,67 s 1116,17 s 1154,83 s 1120,17s
Long Run 6393,33 s 6521,17 s 6712,00 s 6521,83s

Overhead Short - 2,09% 5,63% 2,45%
Overhead Long - 1,61% 4,58% 1,62%

Mean Overhead - 1,85% 5,10% 2,04%

The analysis of the results 3 (see Figure 2 and Table 3) from the different runs show:
a) All container runtimes introduce a certain amount of overhead compared to native
execution of the simulation (1,85% - 5,10% for the arithmetic mean of short and long
run). b) This overhead might be negligible for many workloads over the benefits of
containers, as 2/3 runtimes only add 2,04% or less overhead. c) Although Singularity
causes the least overhead, the differences of Podman in combination with crun as run-
time are minor, especially for long runs of LS-DYNA (1,61% vs 1,62%). d) Compared
to Singularity and crun the performance of runc is noticeably lower.

Discussions with Podman developers indicate that the slight difference of Podman
with crun compared to Singularity might be related to Podman isolation mechanisms
activated by default, such as a seccomp profile or more extensive use of namespaces.

Fig. 2: LS-DYNA: Elapsed time to normal termination for car2car model

3 Values used in Figure 2 and Table 3 are based on “elapsed time” as returned by LS-DYNA
and do not include startup and teardown periods, which are further discussed Section 5.



8 Holger Gantikow, Steffen Walter, and Christoph Reich

4.2 Benchmarks

To ensure comparability with other evaluations and to get specifics on where the over-
head described in Section 4.1 comes from, we performed some additional industry-
standard benchmarks on a single node. We used sysbench and STREAM to measure
CPU and memory performance. Sysbench is a multi-threaded benchmark tool that sup-
ports different tests to measure performance. The evaluation scope of this paper covers
the CPU test. STREAM performs simple vector operations and measures the available
memory bandwidth. It needs to be compiled to use a data set that is significantly larger
than the CPU caches. To reflect CPU cache size and the amount of memory available
in our test systems we modified the preprocessor definition STREAM ARRAY SIZE to
increase the elements per array to 3 billion. When using large data sets, the resulting
values are naturally dominated by the bandwidth between the CPU and the memory
rather than the handling of cache misses [11]. Details concerning benchmark versions,
configurations and execution calls are documented in Table 2.

Figure 3a shows the results of the sysbench CPU benchmark that were sampled over
25 runs with each runtime environment. The variation of the execution times reported by
the benchmark reported is ≈ 300 ms, not counting rare outliers. Therefore, the results
only differ by 0.4%, which does not lead to any direct conclusions, except that the
results of all container-based runtime environments are virtually identical and there
seems to be no added overhead by containerization.

(a) Sysbench: prime number computation time (b) STREAM: performance in GB/s

Fig. 3: Sysbench + STREAM results

Figure 3b illustrates the arithmetic mean of the performance data collected dur-
ing five runs of the STREAM benchmark for STREAM’s four memory-bound vector
kernels in each runtime environment. Again, the measurements are within a very small
window, the results differ by less than 1% and containerization does not seem to impose
additional overhead in most cases.

The Copy part of STREAM, which only copies the elements of one vector into
another (C[i] = A[i]|i = 1 . . .n [11]), shows similarities to the results of the LS-DYNA
benchmark. It can be concluded that the overhead of containerized LS-DYNA is at least
partially due to memory intensive operations.
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5 Limitations

During our evaluation we were affected by limitations of rootless Podman: Some Pod-
man commands fail when no subordinate user IDs (subuid) and subordinate group IDs
(subgid) are not configured, even though we did not make use of the feature since
sub{u,g}ids cannot be used with MPI jobs, since shared memory access and shared
file access is not supported.

When using network based authentication systems like LDAP, sub{u,g}ids cannot
be configured easily, because the files /etc/sub{u,g}id are not utilized. According to
Podman Developers the addition of new directives in the nsswitch.conf to support the
subuid and subgid databases is work in progress. In rare cases when trying to start new
containers for a job run, it failed with an error indicating that there already exists a
container storage for the requested name, even though none by that name is known to
Podman at the time.

We observed that startup and teardown costs of Podman containers are considerably
greater than that of Singularity containers. We measured the following deltas when
comparing the total real wall clock from the start of mpirun until successful termination
and the “elapsed time” as reported by LS-DYNA: native: ≈ 3 s, Singularity: ≈ 5 s,
Podman: ≈ 25 s. We are currently working with the developers to clarify the cause, but
the most probable reason is due to the layered filesystem that needs to be set up and
torn down again in combination with a ≈ 2GB LS-DYNA image.

Other limitations that did not affect our evaluation, but can be relevant to other
HPC environments, are the lack of direct Slurm support, failure to bind to ports < 1024
(privileged ports), and the inability to run from home directories on NFS or GPFS. In
addition, rootless Podman does not support CRIU’s checkpoint and restore features and
cgroups V1 yet. The latter issue will be solved in the long run by moving to V2, which
is already supported in Fedora 31 for crun [14]. A comprehensive list of limitations that
apply to rootless containers is maintained by the Podman developers [3].

6 Conclusion

Our evaluation showed that Podman, despite the different focus of the project, is essen-
tially suitable for use in HPC. In terms of real-world workload performance, Podman
performs on a similar level as Singularity, at least in conjunction with crun as run-
time. Our results with industry-standard benchmarks are consistent with other studies
on other runtimes, namely that containers generate only a small performance overhead,
if at all. However, it is still higher with real-world workloads than with benchmarks.
At the moment there are still some limitations in Podman, including issues that should
be fixed in future versions, but which cause more problems in a production environ-
ment than in our evaluation environment. From an administrator’s point of view, these
include restrictions on the use of directory services such as LDAP, shortcoming of root-
less containers in combination with distributed file systems and, from the user’s point of
view, a more complex integration with MPI workloads than Singularity. Nevertheless,
Podman offers a number of advantageous features. These include the ability to create
images with user privileges only, support for pods and stronger isolation. This makes it
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an interesting option for newer workloads and converged environments. In future work
we want examine Podman specific features and explore the possibilities of OCI Hooks,
especially for integration with workload managers.
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