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Abstract. System-level development has been dominated by program-
ming languages such as C /C++ for decades. These languages are inheren-
tly unsafe, error-prone, and a major reason for vulnerabilities. High-level
programming languages with a secure memory model and strong type
system are able to improve the quality of the system software. This
paper explores the programming language Rust for development of a
scalable, virtual execution environment and presents the integration of
a Rust-based IP stack into RustyHermit. RustyHermit is part of the
standard Rust toolchain and common Rust applications are able to build
on top of RustyHermit.

1 Introduction

The C programming language is still dominating system-level software develop-
ment as it was designed for this exact case and is known to provide high perfor-
mance. However, C is also known to be error-prone and difficult to use in large
scale projects as even senior developers can hardly avoid an incorrect usage of
C. Dangling pointers and missing boundary checks are other typical reasons for
issues within kernel code. This is not a new observation. As described in [6], the
Pilot kernel [29] and the Lisp machine [11] are early examples of the usage of
a high-level language (Mesa and Lisp, respectively) for Operating System (OS)
development. However, the approach has not gained acceptance and is hardly used
because memory safety of high-level languages often induces runtime overhead
(e. g., due to garbage collection).

Furthermore, the OS requirements changed fundamentally over the last years.
The basic infrastructure within OSs was established in the seventies when hard-
ware was expensive and resource sharing was the focus. The virtualization
of hardware resources has been established for a simplified resource sharing,
e. g., sharing a processor in round-robin manner. However, in the era of cloud
computing, complete machines are virtualized supporting server consolidations.
Virtualization is implemented as another software abstraction layer in an already
highly layered software stack. Typical modern OSs still include support for old
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physical protocols (e. g., floppy disks), irrelevant optimizations (e. g., disk ele-
vator algorithms on SSDs) and backward-compatible interfaces (e. g., POSIX).
Anil Madhavapeddy et. al. discuss these issues in [22,21] and present unikernels,
i. e., specialized library OSs, as a solution. Unikernels are built by compiling
high-level languages directly into specialized single-address-space machine images.
In doing so, unused code is removed by static code analysis and system calls
are replaced by common function calls promising a faster resource handling.
Unikernels are able to run directly on a hypervisor or bare metal on the hardware.
They provide a smaller footprint compared to traditional OS kernels and have
more prospect to optimize the applications, e. g., the application and the kernel
can be optimized by means of Link-time Optimization (LTO).

Current Unikernels relinquish backward compatibility, often rely on uncommon
programming interfaces, and barely support multi-processor systems. In [16],
we present a rewrite of HermitCore [14] in Rust called RustyHermit and
demonstrate that the performance of the Rust implementation is on a par with
the original C implementation. RustyHermit is integrated into the standard
runtime of Rust and its compiler infrastructure. It is trivial to port pure Rust
application to RustyHermit, as it just requires a configuration change. Only
applications, which bypass the Rust runtime and call directly a C library, have
to port also the C library to the new systen. Furthermore, existing C / C++ and
Fortran applications can be linked with RustyHermit and generate a bootable
image. In this paper, we focus on the integration of a Rust-based IP stack enabling
the building and deployment of secure and efficient cloud applications.

The rest of this paper is structured as follows: We start with a discussion of
the related work in the area of unikernels and the usage of high-level programming
languages for kernel development. In Section 3, we give a short introduction
to Rust, followed by the Section 4 on kernel development using Rust and the
integration of the IP stack. In the Section 5 we compare the performance of our
kernel with Linux. Finally, Section 6 summarizes the paper and give a short
outlook.

2 Related work

High-level programming languages provide type-/memory-safety and convenient
abstractions of concurrent programming reducing the susceptibility to errors.
However, kernel developers are often skeptical to use new languages because they
expect them to introduce additional overhead compared to C [34] and require a
redevelopment of kernel components. Yet, many research projects use high-level
programming languages to benefit from new features such as a safe memory
handling. New system programming languages, e. g., D [7], Nim [28], Go [10],
and Rust [24], have emerged in the last decade. For nearly every language there
exists an OS project. From the scientific point of view one of the most interesting
projects is Biscuit which is written in Go and analyzed in [6]. Biscuit is able
to run bare-metal in contrast to other Go kernels such as Clive [2]. Go uses a
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garbage collection for the implementation of safe memory handling introducing a
certain runtime overhead as discussed before.

In Rust, the compiler is able to determine when memory must be freed
avoiding the need for according runtime checks. This results in far less runtime
overhead compared to other high-level programming languages, but introduces
unique memory handling at the language level. Levy et al. [18,19] show that Rust
is attractive for kernel development because it promises memory-safety while
providing good performance. In addition, Balasubramanian et al. [1] show that
Rust offers software fault isolation (SFI) with lower overhead and Narayanan et
al. in [25] steps to realize a Rust-based verified firmware. Currently, Microsoft [5]
is also analyzing Rust as a system programming language. Projects such as
Redox [31], Tock [33] or teaching kernels such as our eduOS-rs [9] show that Rust
is usable for OS development, but all these Rust kernels were not designed for
cloud environments.

Both HermitCore and RustyHermit belong to the class of unikernels or
library OSs. MirageOS [21], IncludeOS [3], rumprun kernels [12], and OSv [13]
are typical representatives. The fundamental drawback of unikernels is the porting
effort that is required to adapt existing applications to the underlying minimalistic
OS. This often requires both expert work and a considerable amount of time. One
objective of the Unikraft [35] project is to build unikernels targeted at specific
applications, without requiring the time-consuming, expert work. Unikraft is
written in C, uses newlib [30] as the C library, and LwIP [8] as the network
stack. However, the compatibility to common OSs (e. g., Linux) is currently
still limited. HermiTux [27] has similar objectives and realizes compatibility to
Linux by rewriting system calls and using a modified C library. However, the
compatibility of HermiTux is limited as not all Linux system calls have been
re-implemented. RustyHermit is also not compatible to common OSs, but it
offers the possibility to write portable Rust applications. Changes to the source
code are not required to run the application on Linux or other OSs.

3 Introduction to Rust

Rust is a new programming language originally designed by Graydon Hoare as a
replacement for C / C++. Its goal is to provide the same level of performance, but
to allow for more comprehensive safety checks at compile time and by default
enabled runtime checks when the compile time checks are not sufficient (e. g.,
array access with indices not known at compile time). We discuss only the features
relevant to understand this paper, a detailed overview on Rust can be found
in [4].

Rust relies on ownership to provide safe memory handling without runtime
overhead. Each resource (e. g., memory) in Rust has a variable that is called its
owner. There is exactly one owner at a time and whenever this owner goes out
of scope, the resource will be dropped and the memory freed. Ownership can
be forwarded to another variable invalidating the original owner, or the owner
can borrow the resource to another variable. Read only access can be provided
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to multiple variables at a time via immutable borrows, as long as no mutable
borrow is happening at the same time. In general, these rules prevent data races,
the dangling pointer problem, and pointer aliasing for mutable access. For most
tasks it is possible to develop code that these rules are satisfied at compile time,
however it is also possible to use std::cell::RefCell to bypass compile time
checks, but enforce runtime checks.

Similarly to these checks, Rust provides compile time checks as well ensuring
the correct execution of concurrent or parallel code. Data that is shared between
threads must implement the so-called sync trait (the rust term for an interface)
or must be wrapped into a mutex providing this trait. This rule prevents data
races, as long as the synchronization mechanism (e. g., the mutex) is implemented
correctly. Furthermore, the Rust compiler checks the lifetime of values shared by
threads and will not compile code in which a value is not guaranteed to outlive
the threads borrowing a value.

All checks named before can be circumvented by using the unsafe keyword.
Unsafe Rust code provides the same level of control as C, e. g., it provides raw
pointers enabling direct, unchecked memory accesses and even supports the usage
of inline assembly. Code in unsafe regions should be reviewed more carefully than
code that is checked by the compiler and as a result it is typically frown upon by
the Rust community to use this feature. Currently, it is not possible to write a
complete kernel without the usage of unsafe code. For instance, inline assembly
is important to restore the context of the FPU. However, the presented library
operating system only requires 1170 lines of unsafe code corresponding to only
1.71 % of total code size.

The Rust standard library is divided into an OS-independent and an OS-
dependent part. The library known as core library is the major part of the
OS-independent library and already implements basic error / panic handling,
string operations, and atomic operations. Furthermore, Rust offers the possibility
to redefine the global memory allocator. This allocator is used by all other Rust
codes unless explicitly circumvented. In contrast, the part known as std condenses
the OS-dependent libraries and extends them with various data structures, console
output, and thread handling. It is easily possible to create a project that does
not use std by adding #![no_std] to the main file.

4 A unikernel written in Rust

RustyHermit is a rewrite of our 64 bit unikernel HermitCore [14,15] which
was written in C. RustyHermit is completely written in Rust, supports the
Intel 64 Architecture and comes with support for SSE4, AVX2, and AVX512.
It has multi-core and single-core multiprocessing support by the means of mul-
tithreading and multiprocessing. The Kernel supports the execution of more
threads than available cores. This is an important feature for dealing with con-
current applications or to integrate performance monitoring tools. Currently, the
scheduler does not support load balancing as explicit thread placement is favored
over automatic strategies. Scheduling overhead is reduced to a minimum by the
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employment of a dynamic timer, i. e., the kernel does not interrupt computation
threads which run exclusively on certain cores and do not use any timer. To
improve the security behavior, RustyHermit provides a stack guard and is
completely position-independent. Consequently, the loader is able to randomize
the memory layout.

4.1 Integration of RustyHermit into libstd

One major goal of RustyHermit was a complete integration into the Rust
toolchain to simplify the application development. Any common Rust application
should be buildable with RustyHermit. To achieve this goal, the kernel provides
the required interfaces to the Standard Library (libstd) whilst being based only
on the core library. The operating system abstraction layer of the Rust toolchain
is relative small, so only around 26 files within a total of ˜3000 lines of code are
required to integrate RustyHermit into the standard library of Rust.

Most operating systems are written in C and use a common C library as
interface to the kernel. These functions are typically provided by a helper crate4

in Rust realizing an interface to the C functions. For instance, the C interface
for Rust is published in the crate libc5. All functions within this helper crate
are marked as unsafe and as a consequence the interface is not checkable by the
Rust compiler.

In case of RustyHermit, the complete kernel is written in Rust and theo-
retically, it could be directly integrated into the Rust standard library. However,
the kernel uses a set of external crates to detect processor features, programming
of the interrupt controller, or log messages. As the Rust community wants to
reduce the dependencies of the basic runtime libraries to external crates, we
cannot integrate RustyHermit into libstd directly. Instead, we create two helper
crates hermit-abi6 and hermit-sys7. The former describes only the interface to
the library operating system for linkage and is included in libstds dependencies,
just like the libc crate does for the Linux interface of the Standard Library. The
latter is a helper crate, with the main purpose of building the kernel as static
library from source and linking it to the application.

Separating the kernel and libstd into separate compilation units also allows
the use of different compiler settings for each of them. Hereby, we are able to
disable the FPU and AVX / SSE support for the kernel and to enable it for the
rest of the application. This is necessary because AVX and SSE is not longer
limited to floating-point operations and the compiler would use these instructions
to optimize the kernel code. The usage of AVX and SSE within the kernel could
trigger interrupts to save the FPU context—something which should be certainly
avoided.

4 Crate is a tree of modules that produces a library or executables. Much like a package
in other programming languages.

5 https://crates.io/crates/libc.
6 https://crates.io/crates/hermit-abi.
7 https://crates.io/crates/hermit-sys.

https://crates.io/crates/libc
https://crates.io/crates/hermit-abi
https://crates.io/crates/hermit-sys
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Listing 1.1: Extension of Cargo.toml to integrate RustyHermit

[target.’cfg(target_os = "hermit ")’. dependencies]

hermit -sys = "0.1.*"

To make a Rust application a RustyHermit application, it is sufficient to
include the hermit-sys crate by adding it to the applications dependencies as
shown in Listing 1.1 and declaring it as an external crate in the applications
source. Rust’s package manager Cargo [23] will then download the kernel’s sources,
compile it, and link it to the application.

4.2 Network Support

The library operating system only provides basic features such as interrupt
handling, device drivers, memory management, and scheduling. One solution to
integrate network support, is the use of real hardware drivers. The hypervisor
emulates these devices by trapping every request to the device and emulating
the behavior of the real hardware (trap and emulate). This approach comes with
an important overhead.

An alternative to this is para-virtualization where the hypervisor provides a
simpler and faster interface for the I / O devices to the guest, who is aware of
running on a hypervisor. Today, virtio is the standard abstraction layer [26] for
these para-virtualized I / O devices on KVM-accelerated hypervisors. The driver
is split into two parts: the frontend and the backend. The former is provided
by the guest kernel while the backend is provided by the host. This abstraction
layer can be used for para-virtualization of any I / O device. In case of a network
interface, there exist at least two buffers. One buffer is handling all incoming
packets, while the second buffer is handling all outgoing packets. The original
version of virtio [32] was developed by Rusty Russell for the support of his
own virtualization solution. RustyHermit provides a frontend driver within
the kernel which is used to realize file system access by virtio-fs8 and network
support.

As shown in Fig. 1, RustyHermit uses smoltcp [20] as a dual IPv4 / IPv6
stack and is provided by hermit-sys to the Rust runtime. smoltcp is an event-driven
TCP/IP stack being completely realized in Rust and designed for bare-metal,
real-time systems. In principle, hermit-sys creates a thread, which handles all
incoming packets including ARP and ICMP packets with the help of smoltcp.
Putting the IP stack into hermit-sys and not directly into the kernel offers the
option to use the memory allocator of the Rust runtime and to enable hardware
dependent optimizations (e. g., AVX support) as explained in Section 4.1. To
provide TCP streams to a common Rust application, an interface between smoltcp
and Rust’s standard library is required. In this case, the data or at least the
reference to the data for a certain stream has to be forwarded from the thread

8 https://virtio-fs.gitlab.io

https://virtio-fs.gitlab.io
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Fig. 1: Architecture overview of RustyHermit.

handling the IP packets to the thread waiting for the data or producing the data.
Rust’s standard library provides a synchronization channel based on a multi-
producer, single-consumer FIFO queue and is used to realize the communication
between these threads.

5 Evaluation

All benchmarks were performed on a NUMA system possessing two sockets
each with 12 physical cores, exposing 24 cores in total. The CPUs are Intel
Skylake CPUs (Xeon Gold 6128) clocked at 3.4 GHz, equipped with 256 GiB
DDR4 RAM and 19.25 MiB L3 cache. Processor features such as SpeedStep
Technology, TurboMode, and Hyperthreading are deactivated to avoid side effects.
We used a 4.18.0 Linux kernel with CentOS 8. All benchmarks are compiled with
optimization level 3.

As said before, unikernels are designed to run within a hypervisor. For the
evaluation, Qemu 2.12.0 is used and accelerated by KVM. All benchmarks run
within virtual machines with the same setup. The network interface and the
storage is integrated by virtio to reduce the overhead. The only difference is
that for Linux guests the virtual machine is configured to provide 4 GB of main
memory, while RustyHermit is configured with 512 MByte main memory.

5.1 OS Micro-Benchmarks

In this section we present benchmarks regarding system call overhead and schedul-
ing. The getpid system call is the one with the smallest runtime and closely
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represents the overhead of a system call. The function yield_now of the Rust
runtime triggers the scheduler to check if another task is ready and switches
to them. In our case, the system is idle and consequently the function returns
directly after the check of the ready queues. For benchmarking the system call
performance, we call getpid and yield_now 1 000 000 times and measure the
number of cycles the call took. Table 1 summarizes the results as average number
of CPU cycles for Linux and RustyHermit. The overhead of RustyHermit is
clearly smaller because in a library OS the system calls are mapped to common
functions and the runtime system is cleary smaller in comparsion to the Linux
software stack. A performance improvements by using Rust’s LTO support is in
these micro benchmarks not measureable.

Table 1: Comparison of basic system services by Linux and RustyHermit.

System activity Linux RustyHermit

Time to boot ≤15 s ≤1.0 s
Reserved memory 748MByte 55MByte
Boot image size 1.8GByte 1.6MByte
yield_now() 1439 cycles 68 cycles

(70 cycles wo LTO)
getpid() 1147 cycles 43 cycles

(43 cycles wo LTO)

Table 1 shows also memory consumption of a minimal CentOS 8 configuration,
where only a secure shell server is running and compares it with the memory
consumption of the smallest possible RustyHermit application. To determine
these numbers, the memory consumption of the hypervisor on the host system
is evaluated. The numbers show the physically allocated memory. The reserved
memory in the logical address space is clearly larger because the virtual machines
are configured to use up to 4 GByte memory for the Linux guest and 500 MByte
for RustyHermit as guest. Both virtual machines are not fully utilized. The
low memory consumption and the small image size for RustyHermit promise a
better utilization of system in data centers.

To evaluate the boot time, the time between the start of the virtual machine
and the first response of a ICMP-based ping request is measure. To avoid side
effects from the storage device, the boot image is stored in tmpfs. The last step
before entering the main function of the Rust application in RustyHermit is
the initialization of network stack. Therefore, the results show the minimal time
to start the unikernel application within a hypervisor. While it is possible to start
applications in Linux before the network services have started, this is a rather
unlikely scenario and it is more likely that other services are started between
the network service start and the application start. As expected for a unikernel,
RustyHermit is clearly faster in comparison to Linux which is beneficial for
services requiring low latencies.
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Fig. 2: Comparsion of the network throughput between RustyHermit and Linux

5.2 Network performance

To determine the network performance, a benchmark is used transferring data
with Rust’s standard TCP stream interface. Both the server and the client are
running on two different nodes and are connected through a standard Ethernet
interface with theoretical bandwidth of 1 Gbps. The receiver is in both cases a
Linux process running natively on the hardware while the senders are running
within a virtual machine. In case of the senders, the checksums of the IP packets
are built within the guest machine. All interfaces use an MTU of 1500 Bytes and
the Nagle algorithm is disabled.

Figure 2 compares the performance between RustyHermit and Linux. The
latter provides higher bandwidth for small messages. We expect this to be a
result of a misconfigured packet transmission interrupt, however this requires a
deeper analysis9. The peak performance is equivalent between RustyHermit
and Linux.

6 Conclusion

In this paper, we present RustyHermit a unikernel completely written in Rust.
We integrate a Rust-based IP stack not depending on C / C++. RustyHermit
is published on GitHub [17] and is completely integrated into Rust’s toolchain.

9 We intend to either fix this issue or provide a detailed explanation in case the paper
is accepted for publication.



10 S. Lankes et al.

Consequently, common Rust applications, which do not bypass the Rust runtime
and directly use OS services are able to run on RustyHermit without modifi-
cations.

We show that RustyHermit provides excellent performance in micro bench-
marks and provides a small memory footprint compared to a minimal CentOS 8
virtual machine image. A deeper analysis is required to optimize the IP stack
for small messages. However, in combination with the low memory footprint is
RustyHermit already suitable for the development of micro services.
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